Unit 1 		Matty Dickens

Conjectures:
⇒ (implies)
e.g. x = 4 ⇒ x2 = 16

⇔ (equivalent)
e.g.  x= ±4 ⇔ x2= 16

Quantifiers:
 :(For all)								[image: https://upload.wikimedia.org/wikipedia/commons/thumb/3/39/Latex_real_numbers.svg/120px-Latex_real_numbers.svg.png]: ( real set)
Z:  (integer set)
∈: (element)



∃ : (there exists)
e.g. ∃x∈Z

[image: Image result for real numbers]

Implications: ⇒ one way
Equivalence: ⇔ two-way



Converse:** Works for most definitions

		        P⇒Q
	Converse is Q⇒P
Is when the hypothesis and conclusion of a statement is switched. However, the converse of a true statement need not be true
e.g. if x=2 then x2=4 is true
       if x2 = 4 	           is false (because x could be -2)

Although if the statement are true they are equivalent statements can be written ‘ P if only Q’
e.g. A triangle has two sides of the same length if and only if it has two angles in size.

Contrapositive:
		                 	    P⇒Q
The contrapositive is “If not Q then not P”
Is when the hypothesis and the conclusion of a conditional statement is switches and then negating both.
e.g. if x=2 then x2 then x2=4
Contrapositive statement: if x2 ≠4 then x ≠2

The contrapositive of a true statement is also true
e.g. if a polygon has exactly 4 sides then the polygon is a quadrilateral (True statement)
        If a polygon is not a quadrilateral then it does not have exactly four sides (The contrapositive is also true)
    
Inverse:
				    P⇒Q
            The inverse statement is:   if not P then not Q
Negating both the hypothesis and the conclusion of a conditional statement.



Negation: (not)
If P is the statement
		It is raining
Then the negation of P is the statement:
		It is not raining

Assume the opposite and prove the opposite wrong 

e.g. the statement: 
	You cannot have a right-angle triangle with one side of length 3x cm, another side length (4x+5) cm and the longest side of length (5x+4)
Assume the opposite 
	Assume that we can indeed have a right-angle triangle with the given side lengths and the prove that this assumption leads to something that cannot be true.

Pigeon-Hole Principles:
If there are n pigeon holes, n 1, and n+1 pigeons go in them, then at least one pigeon hole must get two or more pigeons.
[bookmark: _GoBack]e.g. a letterman has 7 letters, but there’s only 6 letter boxes. Therefore, one of the letter boxes will have at least 2 letters.

Concluding
Thus for this statement 			if P then Q
	The converse statement is		if Q then P
The contrapositive is 		if not Q then not P
The inverse statement is 		if not P then not Q
	
· The contrapositive statement involves both the effect of the converse, in its switch of P and Q, and the inverse, with its negations of both P and Q
· If the original statement is true then the contrapositive is also true but the converse and the inverse may not be
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